Extensions 1→N→G→Q→1 with N=C3 and Q=C23.8D6

Direct product G=N×Q with N=C3 and Q=C23.8D6
dρLabelID
C3×C23.8D648C3xC2^3.8D6288,650

Semidirect products G=N:Q with N=C3 and Q=C23.8D6
extensionφ:Q→Aut NdρLabelID
C31(C23.8D6) = C62.29C23φ: C23.8D6/C4×Dic3C2 ⊆ Aut C396C3:1(C2^3.8D6)288,507
C32(C23.8D6) = C62.31C23φ: C23.8D6/Dic3⋊C4C2 ⊆ Aut C396C3:2(C2^3.8D6)288,509
C33(C23.8D6) = C62.32C23φ: C23.8D6/Dic3⋊C4C2 ⊆ Aut C396C3:3(C2^3.8D6)288,510
C34(C23.8D6) = C62.28C23φ: C23.8D6/C4⋊Dic3C2 ⊆ Aut C396C3:4(C2^3.8D6)288,506
C35(C23.8D6) = C62.98C23φ: C23.8D6/C6.D4C2 ⊆ Aut C348C3:5(C2^3.8D6)288,604
C36(C23.8D6) = C62.223C23φ: C23.8D6/C3×C22⋊C4C2 ⊆ Aut C3144C3:6(C2^3.8D6)288,736

Non-split extensions G=N.Q with N=C3 and Q=C23.8D6
extensionφ:Q→Aut NdρLabelID
C3.(C23.8D6) = C23.8D18φ: C23.8D6/C3×C22⋊C4C2 ⊆ Aut C3144C3.(C2^3.8D6)288,89

׿
×
𝔽